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We study the dynamics of quantum discord of a two-qubit system coupled to a common structured reservoir at zero temperature.
The conditions to maximize reservoir-induced quantum discord for the two-qubit system wiht an initially factorized state
are derived. In particular, when the two qubits are placed in a lossy cavity, high values of quantum discord can be obtained
in the dispersive regime, even in the bad-cavity limit. Finally, we show that under certain conditions, the quantum discord
dynamics exhibits quantum beats.
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For a given bipartite quantum state, it is important to know
whether it is entangled, separable, classically correlated or
quantum correlated. Much effort has been invested in subdi-
viding quantum states into separable and entangled states[1,2].
It is well known that the entanglement makes some tasks in
quantum information possible which are impossible without
it[3,4]. However, entanglement is not the only type of correla-
tion which is useful for quantum technology. Recently, it was
found that there are some quantum correlations other than
entanglement which also offer some advantages, for example,
quantum nonlocality without entanglement[5,6]. In addition, it
was shown theoretically and later experimentally that some
separable states may also speed up certain tasks over their
classical counterparts[7,8]. Therefore, it is desirable to investi-
gate, characterize and quantify quantum correlations more
broadly.

On the other hand, we know that all realistic quantum
systems interact inevitably with their surrounding envir-
onments, which introduces quantum noise into the systems.
As a result, the quantum systems can lose their energy
(dissipation) and/or coherence (dephasing). Thus, it is of fun-
damental importance to know the influence of the environ-
ment on quantum correlation. In several recent papers, quan-
tum correlation dynamics in open quantum systems has been
studied[9-15]. It was shown that the quantum correlation mea-
sured by quantum discord is more resistant against the envi-
ronment than quantum entanglement[8].

In this paper, we study the dynamic action of both quan-

tum and classical correlations by quantum discord for two-
qubit systems in noisy environment. We present our physical
model and study its time evolution. The dynamics of quan-
tum correlation is studied analytically by means of quantum
discord for the given initial states. We discuss the effect on
quantum discord in the Markovian and non-Markovian cases,
respectively, and provide a summary of the results together
with some concluding remarks.

Let us consider an open quantum system consisting of
two qubits coupled to a common zero-temperature bosonic
reservoir. The Hamiltonian of the total system is

H = HS + HR + Hint ,                                                     (1)

where HR is the Hamiltonian of the reservoir, and HS is the
Hamiltonian of the two qubits which are coupled to the com-
mon reservoer via the interaction Hint .

In the dipole and the rotating-wave approximations, and
assuming h

_
=1, the Hamiltonian for the total system can be

obtained as[15]

where bk
+, and bk are the creation and annihilation operators

of quanta of the reservoir, ( j) and j are the inversion op-
erator and transition frequency of the jth qubit (j = 1,2),
respectively, k is the frequency of the k mode of reservoir,
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and jgk describes the coupling strength between the jth qubit
and the k mode of the reservoir. j is dimensionless real
coupling constant measuring the interaction strength of each
single qubit with the reservoir. We denote the collective cou-
pling constant by T  = ( 2 + )1/2 and the relative interac-
tion strength by rj = j/ T .

We restrict ourselves to the case in which only one exci-
tation is present in the system and the reservoir is in the
vacuum. Initially, the two-qubit system is assumed to be
disentangled from its reservoir, and the initial state for the
whole system is written as
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where 2/)1(01 sc  and i
02 e2/)1( sc are complex

numbers defining the initial state for the qubit system,
11 s , j

0  and j
1 (j =1,2) are the ground and excited

states of the jth qubit, respectively, and R
0k  is the state of

the reservoir with zero excitations in the k mode.
As a consequence of the time evolution generated by

Eq.(1), the excitation can be shared by the qubits and the
reservoir, so that the time evolution of the total system is
given by

                                                                                       (5)

where
R

0k  is the state of the reservoir with only one exci-
tation in the kth mode and kk 00

R .
The reduced density matrix describing the two-qubit

systems is obtained from the density operator )()( tt
after tracing over the reservoir degrees of freedom, which
takes the form as

where c is the fundamental frequency of the cavity, the weight
W is proportional to the vacuum Rabi frequency, and  is the
width of the distribution and therefore describes the cavity
losses (photon escape rate).

Substituting Eq.(11) into Eq. (10), one can obtain the ana-
lytical form of )( 1ttf , and then the analytical solution for
the amplitudes c1(t) and c2(t) can be easily solved as

)()()()( SBAS SSS                                                        ,                                 (15)

where )logr(T)( 2S is the Von Neumann entropy of
density matrix , and A B is the reduced density operator
for subsystem A(B).

Quantum mutual information is classified as quantum cor-
relation D and classical correlation C[17]. And the quantum
correlation D is quantified by the so-called quantum discord18-20].
Then the quantum nature of correlation between two quan-
tum systems is different between quantum mutual informa-
tion I and classical correlation,

where cjj , 1221 , and the correlation func-
tion )( 1ttf  is related to the spectral density )(J  of  the
reservoir by
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Therefore, the two-qubit dynamics is completely character-
ized by the amplitudes of c1,2(t).

By solving the Schrödinger equation, we can obtain the
motion equations for c1,2(t) as

)]2/sinh(i)2/[cosh(e)( 2/)i( ttt t                                                                                        , (14)
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It is obvious that the solution of c1,2(t) is determined by
the explicit form of )(J . We consider the spectral distribu-
tion of the Lorentzian form[15] as

)()()( SSS CD                                        ,                                           (16)

which means that for obtaining the amount of quantum
correlation, one has to find its classical part. The classical
correlation C( S) is defined as the maximum information about
one subsystem i , which depends on the type of measurement
performed on the other subsystem. For a local projective mea-
surement k performed on the subsystem B with a given out-
come k, we denote the prcbability as
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with

where IA is the identity operator for the subsystem A. Then the.e)(d)( ))(i(
1

1c ••Jttf tt                                                                                    (10)
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where 21  and i22
R

2  with R =
22

T
24W  as the generalized Rabi frequency and R=W T

as the vacuum Rabi frequency.
It is well known that the total correlations between two

subsystems A and B described by a bipartite quantum state as
AB = S is generally measured by quantum mutual informa-

tion[16] as
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We first consider the bad-cavity limit case. Time evolu-
tions of the quantum discord in bad-cavity limit and resonant
limit are shown in Fig.1. In Fig.1, the time is measured in
units of  with = t. In the bad-cavity case, e.g., for R=0.1
and for small values of the detuning  < R, the behavior of
the quantum discord does not change appreciably compared
with that of the resonant case. For values of the detuning

R, i.e., when approaching the dispersive regime, the dy-
namics for an initially factorized state (s=1) shows a mono-
tonic increase to the stationary value of the quantum discord
in the resonant case as shown in Fig.1(a). However, a signifi-
cant change occurs in the bad-cavity limit when the system is
prepared in an initial entangled state. Indeed, one can prove
that in this regime, contrary to situation in the resonant case,
the finite time t which satisfies D(t

_
)=0 does not exist any-

more as shown in Fig.1(b).
We now focus on the dispersive regime >> >>R. Fig.2

shows the evolution of quantum discord as a function of scaled

Fig.1 Time evolutions of the quantum discord in the bad-
cavity limit (R=0.1) with s=0 and =0 and resonant limit

Fig.2 Evolution of quantum discord as a function of the
scaled time = t in dispersive regime with 1= 2=10  un-
der the bad-cavity limit (R=0.1) with s=1

time = t in bad-cavity limit with 1= 2=10 . In this case, the
quantum correlation shows oscillations as a function of time
for all of the initial atomic states for which a finite stationary
quantum discord is obtained, .0SD  Due to the presence of
these oscillations and for an initially factorized state, the quan-
tum discord is greater than the stationary value DS even in the
bad-cavity limit, as shown in Fig.2.
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where the maximum is taken over the complete set of or-

thogonal projectors ,k  and AA
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and

On the general two-qubit state given by Eq.(7) and using
Eq.(16), it is straightforward to prove that the classical correla-
tions do not explicitly depend on ö, and are maximized for
è = (2n+1)ð/2 with n Z. The analytic expression for C( S)
is given by
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The analytic expression of the discord is
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classical correlation is

)]k is the state of the subsystem A on condition that the
measurement of the outcome is labelled by k.

For the system considered in this paper, the optimization
problem in the definition of the classical correlations can be
solved exactly, and a simple analytical expression for this quan-
tity can be derived. Indeed, calculate the action of the one-
qubit projectors,

When it is in good-cavity limit, i.e., in the strong-cou-
pling case, quantum discord oscillations are present for any
initial atomic state. Moreover, for << R, when both
atoms are effectively coupled to the cavity field, i.e., r1 0
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Fig.3 Quantum discord as a function of = t outside the
dispersive region with 1= 2=0.7 in the good-cavity limit
(R=10) with s=1

When only one of the two qubits is effectively coupled to
the cavity field, i.e., for r1=0 and 1, for maximally entangled
initial states s = 0 in the resonant regime = 0, the system
performs damped oscillations between the states  and

 which are equally populated at the beginning. Hence,
quantum discord revivals with maximum amplitude are
present in the dynamics, as shown in Fig.4(a). Increasing the
detuning, the amplitude of the oscillations decreases, and the
revivals disappear, while the frequency does not change ap-
preciably as shown in Fig.4(a). While for greater values of
the detuning, the oscillations completely disappear, and the
quantum discord decays exponentially as shown in Fig.4(b).

Finally, we note that similar to the behavior discussed in
the bad-cavity limit, when the qubits are initially in a factor-
ized state, the presence of the detuning enhances the genera-
tion of quantum discord in a short period compared with that
in the resonant coupling case. In general, in the strongly dis-
persive regime, the qubits do not exchange energy with cavity,
which is only virtually excited. Thus a high-degree reser-
voir-induced quantum correlation can be generated in both
the good- and bad-cavity limits.
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Fig.4 Time evolution of quantum discord with = t in the
good-cavity limit (R=10) with s=0 and = 0

and 1, the dynamics of quantum correlation is characterized
by the quantum discord of quantum beats, as shown in Fig.3.
For initially entangled states, this phenomenon is more evident
for = , because the value of stationary entanglement in this
case is higher, and the behavior of the quantum is more regular.


